EspINA is a user-friendly tool which performs segmentation and analysis of elements in a reconstructed 3D volume of the brain, and greatly facilitates and accelerates these processes. It allows visualization and segmentation of large image stacks datasets, both from electron micrsocopy (e.g. FIB/SEM) and confocal laser microscopy.
Fluent navigation through the different sections of the stack using three planar views. Simultaneous different channel visualization can be performed in a customized stainings and intensity/contrast properties. Navigation bookmarks helps to easily find stack spots.
Identify as many elements as you want using our classification or expand it as needed. Reconstruct them using our manual or semi-automated tools.
If the result of the segmentation is not completely satisfactory, we provide a set of tools to enhance their morphology automatically or manually.
Geometrical features of segmented elements are relevant to their function. Different 3D visualizations provide detailed views for every segmented element.
The final step of the working session is the extraction of measurements for each object segmented. A list of morphometric features and parameters can be selected to be easily exported to standard .csv or .xls spreadsheet format.
New tools, visualizations and reports can be added via our plugin system. You can even add your own.
You can download the latest binaries for Windows or Linux machines.
Download our FIB/SEM stack sample from mouse brain to start testing out EspINA without delay.
Marta Turegano-Lopez et al., 2022.
DOI=10.3389/fnana.2022.852057
Domínguez-Álvaro et al., 2021.
eNeuro 8: ENEURO.0504-20.2021. doi:10.1523/ENEURO.0504-20.2021
Cano-Astorga et al., 2021.
Cerebral Cortex, bhab120
Blazquez-Llorca et al.
Cereb Cortex. 2021 Mar 5;31(4):1927-1952.
doi: 10.1093/cercor/bhaa331
Montero-Crespo et al., 2021.
Brain 144 (2): 553–573.
doi.org/10.1093/brain/awaa406
Domínguez-Álvaro et al., 2021.
Cereb Cortex, 31(1):410–425.
doi.org/10.1093/cercor/bhaa233
Santuy et al., 2020
Sci Rep 10, 14014.
doi.org/10.1038/s41598-020-70859-5
Rodriguez-Moreno et al., 2020.
J Neurosci, 40 (13): 2663-2679.
doi.org/10.1523/JNEUROSCI.2886-19.2020
Montero-Crespo et al., 2020.
Elife. 9: e57013.
doi:10.7554/eLife.57013
Kikuchi et al., 2020.
Cereb Cortex. 30(6):3800-3819.
doi:10.1093/cercor/bhz343
Turegano-Lopez et al., 2020.
Cereb Cortex. 2020 Mar 14;30(3):1887-1901.
doi:10.1093/cercor/bhz211
Domínguez-Álvaro et al.,2019.
eNeuro. 6(4): ENEURO.0140-19.2019.
doi:10.1523/ENEURO.0140-19.2019.
Garcia-Marin et al., 2019.
Cereb Cortex. 29 (1): 134–149
doi.org/10.1093/cercor/bhx311
Kwon et al., 2019.
Cereb Cortex. 29(7):2771-2781.
doi:10.1093/cercor/bhy143
Santuy et al. 2018.
Cereb Cortex. 28(10):3673-3684.
doi:10.1093/cercor/bhy159
Santuy et al. 2018.
eNeuro. 5(1)
doi:10.1523/ENEURO.0377-17.2017
Santuy et al. 2018.
Brain Struct Funct. 223(1):77-90.
doi:10.1007/s00429-017-1470-7
Rodriguez-Moreno et al. 2018.
Cereb Cortex. 28(9):3159-3175.
doi:10.1093/cercor/bhx187
Domínguez-Álvaro et al. 2018.
Acta Neuropathol Commun. 6(1):20.
doi:10.1186/s40478-018-0520-6
Bosch et at. 2016.
Cereb Cortex. 2016 Oct 17;26(11):4282-4298.
doi.org/10.1093/cercor/bhw216
Márquez-Neila et al. 2016.
Neuroinformatics. 14(2):235-250.
doi:10.1007/s12021-015-9288-z
Bosch et al. 2015.
Front Neuroanat. 9:60.
doi:10.3389/fnana.2015.00060
Merchán-Pérez et al. 2014.
Cereb Cortex. 24(6): 1579–1588
doi.org/10.1093/cercor/bht018
Morales et al. 2013.
Front Neuroanat. 7:20.
doi:10.3389/fnana.2013.00020
Blazquez-Llorca et al. 2013.
J Alzheimers Dis. 34(4):995-1013.
doi:10.3233/JAD-122038
Morales et al. 2011.
Front. Neuroanat. 5:18
doi.org/10.3389/fnana.2011.00018
If you have used EspINA to get your results and you have published them (congratulations!!) please, let us know and your publication will also appear here. Reviews of image processing software which include EspINA are also welcome.